Tuesday, 26 March 2019

Welcoming Dr. Rui He

We are happy to welcome Dr. Rui He from Southwest Petroleum University, China as a Speaker to our International Conference on Oil and Gas on August 5-6, 2019 Singapore

For more info visit http://bit.ly/OilGas2019


Monday, 11 March 2019

Advanced Drilling Techniques

Horizontal Drilling

Horizontal drilling starts with a vertical well that turns horizontal within the reservoir rock in order to expose more open hole to the oil. These horizontal "legs" can be over a mile long; the longer the exposure length, the more oil, and natural gas are drained and the faster it can flow. More oil and natural gas can be produced with fewer wells and less surface disturbance. However, the technology only can be employed in certain locations.

Multilateral Drilling

Sometimes oil and natural gas reserves are located in separate layers underground. Multilateral drilling allows producers to branch out from the main well to tap reserves at different depths. This dramatically increases production from a single well and reduces the number of wells drilled on the surface.

Extended Reach Drilling

Extended Reach Drilling allows producers to reach deposits that are great distances away from the drilling rig. This can help producers tap oil and natural gas deposits undersurface areas where a vertical well cannot be drilled, such as underdeveloped or environmentally sensitive areas. Wells can now reach out over 5 miles from the surface location. Offshore, the use of extended reach drilling allows producers to reach accumulations far from offshore platforms, minimizing the number of platforms needed to produce all the oil and gas. Onshore, dozens of wells can be drilled from a single location, reducing surface impacts.

Complex Path Drilling

Complex Path Drilling creates well paths with have multiple twists and turns to try to hit multiple accumulations from a single well location. Using this technology can be more cost effective and produce less waste and surface impacts than drilling multiple wells.


Source: API Energy

Monday, 4 March 2019

Major Challenges for the Oil & Gas Industry

1. Reducing costs to remain competitive

Producing crude oil and refined products at a lower cost to stay competitive on the market is one of the industry’s major challenges. Optimizing production systems and environmental utilities on currently operating sites is, therefore, a priority for the oil industry. This maximizes production efficiency, reduces the costs of extraction and refining and thereby offsets the exploration costs.

2. Improving performance to ensure the valorization of assets

To sustain their supply of crude oil or gas, oil companies are looking to extend the life of mature sites but are also compelled to seek new sources of oil or gas for which extraction, transport, and refining are much more complex and costly. For that, they aim to achieve 100% reliability of their plants: no unplanned shutdowns, increased throughput, secure industrial assets.

3. Improving the Environmental footprint to meet the increasingly stringent standard

The oil and gas industry is a major consumer of water and energy resources and is therefore subject to increasingly stringent environmental standards. This constrains them to rethink extraction, production and distribution methods in order to obtain or maintain their license to operate.
They also have to provide guarantees and ensure transparency in the environmental management of their activities.

Thursday, 28 February 2019

Upstream Oil & Gas Predictions For 2019

AN INCREASE IN OFFSHORE ACTIVITY

Offshore activity is expected to increase as new projects are being sanctioned and activity levels are approaching 80% of their historical highs. This suggests that the offshore upturn seen throughout 2018 is set to continue. With a recent rise in final investment decisions on offshore oil and gas projects globally, this is set to have a positive impact on global offshore investments throughout 2019

SMALL COMPANIES STORM AHEAD

2019 could be the year in which smaller producers take the reins in the oil and gas market. With the North Sea remaining one of the biggest and most important regions for activity, offshore projects are on the rise, and innovations are moving quickly. It is key that companies can act and respond efficiently to a fast-paced industry. Smaller operators can often offer more streamlined decision-making processes, which allows them to act rapidly to develop and explore changing environments within the market.

GOING DIGITAL WITH INDUSTRY

Within the industry, 2019 is the year in which service companies and operators alike can transform operations efficiency across their workforce by leveraging advanced digital technologies.

RECRUITMENT SURGE

With 41% of oil and gas company executives expanding their headcount throughout 2018, it is highly likely that this recruitment drive will continue into 2019.

This anticipated growth in recruitment is undoubtedly a reflection on a positive shift within the oil and gas industry which has seen companies remaining reactive to market conditions and offshore activity rising. Growth in headcounts has been aided by campaigns within the industry to push for a more inclusive workforce.

OIL PRICE INCREASE

And finally, perhaps the most important trend we hope to see throughout 2019 is an increase in oil prices; which is currently over $80 per barrel. It has been speculated that prices could rise towards $100 per barrel towards the end of the year or by early 2019. The year-on-year increase in oil prices is positive steps towards recovery following the 2015 slump. Furthermore, analysts at Offshore Magazine have predicted that offshore gas production will perform well moving into 2019, resulting in a peak in prices.

Wednesday, 21 November 2018

Biggest Trends in the Offshore Oil & Gas Sector

One industry sector that was affected heavily by the recent oil crisis is the offshore oil and gas sector.


1. Cost efficiency

After the collapse of the oil price badly, oil and gas companies have undertaken effective measures to cut expenses. These efficiency improvements are beginning to bear fruit: many operators are now able to break even at oil prices well below what they used to be before the crisis. Although prices currently seem to gain some stability, the cost-efficient operation of offshore production systems is still crucial. One important factor that contributes largely to the reduction of operational costs is asset integrity. In this context, combining professional experience gained over many decades and high-class, future-proof technology is the key to cost-efficient solutions. Budget-priced solutions alone are of no real benefit. Instead, it is durable, flexible, and proactively developed solutions that will advance the industry.

2. New approaches

Closely linked to the pressing need of cost reduction is the pursuit of new, more efficient approaches. Acceptance for revolutionary ideas and methods is steadily growing in this traditionally rather conservative industry since less laborious solutions that deliver precise, reliable, and repeatable data are required urgently. ‘Smartifying’ processes and procedures will definitely gain in significance as technology is now capable of achieving results that were unthinkable only 10 or 20 years back. The keywords here are data processing, modeling, and virtual testing.

3. Decommissioning

The number of decommissioning projects will increase like never before. However, understanding the requirements, challenges, and risks will be the key success factor to excellence in project completion. In order to realize decommissioning projects as efficiently and safely as possible, precise information on the asset’s integrity status is vital. It forms the basis of sustainable project strategies and impacts their success significantly.

4. Extreme conditions

Undisputedly, offshore operation today means operating under ever-challenging and increasingly hostile conditions. 24/7 operation, remote locations, extreme water depths, and large temperature ranges call for new infrastructures and controls. Reliability, technical flexibility, and the application of new materials are only a few factors that determine economic success. Therefore, more than ever, the industry needs equipment and technologies that perform well, even under the most extreme conditions.

5. Integrity and lifetime extension

Integrity and asset lifetime extension are mutually dependent. Today, well-trained experts use high-performance software to turn targeted and precise information into a basis for economically correct decision-making. In this way, operational models are created that ensure safe and efficient operation well beyond the expected lifetime of an asset.

Wednesday, 19 September 2018

Do artificial fossil fuels have a future?

The processes that create fossil fuels are complex, and take place over extremely long periods of time.

The oil and gas we use today began as plants and animals living millions of years ago. When the living things died, layers of sediment buried their bodies over millions of years, pushing large quantities of the organic material deeper into the Earth. At deeper depths, over thousands and thousands of more years, greater levels of heat and pressure transformed the organic materials into fossil fuels. That's how fossil fuels which account for 85 percent of the world's energy use were formed. If we use up the total quantity of extractable fossil fuels that are still in the ground something that could happen in the next 100 years, we would have to wait millions of years for new deposits to form.
Enter synthetic fossil fuels, which many scientists are working to develop.

But are synthetic fossil fuels really a good choice for future energy capacity? We know that in the last 100 years carbon dioxide levels have risen from around 280 ppm to over 399 ppm, while global temperatures have risen by 0.8°C. There is a scientific consensus that human activity is responsible for most or all of this rise.


Current estimates suggest that climate change is very likely to become dangerous to human civilization above 550 ppm but less likely below 450 ppm. Continuing to burn synthetic fossil fuels will continue to raise the level of carbon dioxide and other greenhouse gases in the atmosphere, potentially triggering dangerous or catastrophic climate change. Unless we can find a way to otherwise reduce the levels of carbon dioxide in the atmosphere, synthetic fossil fuels would seem to be a dangerous choice.

One option is to create fuels that work similarly to fossil fuels but that when burned don't emit any carbon dioxide.

Scientists are working on a cheap hydrogen-based synthetic gasoline that costs $1.50 a gallon to manufacture, doesn't emit carbon dioxide, and can be used in existing vehicles without engines modifications.

But even if zero-carbon fuels don't reach the marketplace, the very production of synthetic fossil fuels may itself be a way to reduce the level of carbon dioxide in the atmosphere.

Although stripping carbon dioxide out of the atmosphere cannot address other climate problems like ocean acidification or methane emissions, and although the cost remains high, the technology already exists to regulate the level of carbon dioxide in the atmosphere.

This suggests that artificial fossil fuels may have a strong future, especially if their production reduces, rather than increases, atmospheric carbon dioxide levels.

Monday, 3 September 2018

Innovations in Oil Drilling

Horizontal Drilling:

A horizontal well is drilled deep down vertically at first, but then changes direction (at what is called the kick-off point) before it encounters the reservoir (at the entry point) and extends horizontally through it. But the advantages of horizontal drilling go beyond increasing well productivity. It also allows wells to be dug safely under environmentally sensitive and protected land.

Although the first horizontal well was drilled in 1929, they were expensive, and the development of hydraulic fracturing soon improved the productivity of vertical wells.

Measurement-while-drilling Systems:

MWD allows operators to receive real-time information on the status of drilling, as well as the ability to steer the well in other directions. It relates information such as gamma rays, temperature, and pressure, as well as the density and magnetic resonance of the rock formations. This serves a myriad of functions. It helps operators drill more efficiently while preventing blowouts and tool failures. It also helps operators show that they’re not drilling into unauthorized areas.

Seismic Imaging:

One of the most important innovations in oil exploration was 3-D seismic imaging. This relies on the idea that sound bounces off and travels through different materials in slightly different ways. In this process, an energy source such as a vibrator truck sends sound waves deep into the earth. Special devices called geophones are positioned on the surface, which receives the sounds that bounce back up and send the information to recorder trucks.

Hydraulic Fracturing:

To help stimulate the well and drive out the trapped oil, drillers employ hydraulic fracturing. In this process, they inject water combined with chemicals into the well with enough pressure to create fractures in the rock formations — fractures that can extend hundreds of feet long. To keep the fractures from closing again, drillers send down a proppant, which is a mixture of fluids, sand and pellets. These fractures allow oil to flow more freely from the rock.

Offshore Drilling and ROV’s:

One of the technologies that spurred the development of offshore drilling was remotely operated vehicles, or ROV’s, which the military was already using to retrieve lost equipment underwater. Because diving in deep water is dangerous, the oil industry adapted ROV’s for drilling in the 1970s.

Controlled from the rig above the water’s surface, an ROV is a robotic device that allows operators to see underwater. Some types allow the operator to make an ROV’s robotic arms perform different functions, such as subsea tie-ins and deep water installations, as deep as 10,000 feet (3,048 meters).

Friday, 31 August 2018

Oil and Gas Technology: Robotics and Automation

The industry’s advances in oil and gas technology is a direct result of the hard times that came with falling oil prices. Times being tougher meant firms had to look at ways to increase their operational efficiency. Companies can use robots and automation to cut down on the waste that comes with downtime on a rig. Downtime is an inevitable reality robotics and other oil and gas technology can ease this problem considerably. There was also a realization that many of the most dangerous jobs in the industry could be filled by robots so workers were not put at risk of injury.



Some of the ways robotics and automation are used in oil and gas include:
  • Robotic vehicles are being used offshore to inspect and make minor subsea repairs 
  • Drones are being used to inspect pipelines 
  • Automation is being used in midstream infrastructure and rigs 
  • The Iron Roughneck is a robot that automates the repetitive and dangerous task of connecting drill pipes. 
  • Remotely operated aerial drones can survey the area 
  • Whole unmanned platforms that use only robotics and automation

Wednesday, 29 August 2018

INNOVATIVE DRILLING TECHNOLOGY TO ENSURE LONG TERM ACCESS FOR AGEING RESERVOIRS

Drilling at great depths in the search for new supplies of oil or gas is a highly technical and difficult task. The drill must be able to keep operating despite huge amounts of pressure, temperature and debris as the well gets deeper. An essential part of the drilling process is the use of drilling fluid, or as our engineers call it, ‘mud’. This is pumped down the drill pipe to keep the drill bit cool. The fluid also brings drilled cuttings back to the surface, where the cuttings are removed for examination and then safe disposal. The fluid is then recycled and reused – all with no harm to the environment



High-Pressure challenges

Many of the biggest energy reserves lie in so-called High-Pressure/High-Temperature (HP/HT) reservoirs. Drilling these reservoirs is extremely challenging with reservoir pressures up to 1,100 bar and temperatures beyond 200°C. Once discovered and put into production, the pressure in the reservoir reduces as gas is removed and carried to the surface. This pressure reduction in the reservoir creates a situation where the reservoir is at a pressure much lower than that of the rock formation immediately above it. The drilling mud must be kept at a density heavy enough to hold back the formation fluids but not be too heavy to fracture and damage the now depleted reservoir. Managing this balancing act successfully without fracturing the reservoir is critical to be able to drill wells on aging HP/HT reservoirs.

Tuesday, 28 August 2018

How to achieve Successful innovations in the oil & gas industry ?

In an industry where innovation is now the key to sustainability. One of the biggest challenges for oil and gas companies when achieving this degree of innovation on an industry-wide scale is finding the best way to integrate ground-breaking, new technologies.

Larger companies must refocus much of their investment on the smaller, more ambitious technology developers to ensure revolutionary solutions enter the oil and gas market faster and enable them to prepare their existing solutions for success within a new era of innovation.

1434995116844

One particular concept we have seen emerge across the oil and gas industry within the last decade is the digital oilfield, which refers to the real-time automation of operations through a combination of business process management systems and complex information technology, to ensure the simple management and tracking of the data. This has presented oil and gas companies with one way to streamline systems and achieve technology innovation, however a greater investment in startups could see many other opportunities come to fruition. This means we must have a technology vision for the industry and a future where remote operations and automation are the norm.

Friday, 24 August 2018

Recent survey shows that the oil and gas industry could unlock more than $1bn of revenues by developing technologies to inspect offshore infrastructure. Which technologies are these? Where are they being built…?

The oil and gas industry could generate an extra $1 billion in revenues if it were to develop new technologies in the field of offshore infrastructure inspection, a new report has found.

The study, which Oil & Gas UK commissioned from Lockheed Martin and was titled The Asset Integrity Theme Landscaping Study, found that companies’ efforts to check installations for corrosion and inspect vessels were being held back by gaps in technology.

Many of the current techniques are inefficient and unnecessarily costly. Vessel inspection is usually done manually, according to the report’s authors, and can be hazardous and time consuming, as an engineer has to work in confined spaces. Corrosion is also difficult to trace because surfaces on oil and gas installation are covered with insulation which is expensive and time consuming to remove.

The report, which was ordered on behalf of the UK’s Technology Leadership board



mentioned a number of technologies which could help, but warned that there was not currently one single solution, and oil and gas companies would likely have to combine several different options to get the desired results.

One corrosion detection technology mentioned was the pulsed eddy current technique, which involves driving an electromagnetic field through the outer insulation, allowing sensors to detect variation in the field that are caused by changes in the material, such as corrosion.

The report also recommended that oil and gas operators use a combination of remotely-operated vehicles and sensors to make vessel inspection more efficient.